
Practical Software Reliability Modeling

Dolores R. Wallace
SRS Information Services

Software Assurance Technology Center
NASA Goddard Space Flight Center

Greenbelt, MD 20771
dwallac@pop300.gsfc.nasa.gov

Abstract

 NASA is increasingly dependent upon software in
systems critical to the success of NASA’s mission. The
capability to accurately measure the reliability of the
software in these systems is essential to ensuring that
NASA systems will meet mission requirements. The
Software Assurance Technology Center at the NASA
Goddard Space Flight Center explored software
reliability modeling as a practical measurement
technique. This paper describes software reliability
modeling, the effort required to use it, and potential
improvements to the models to allow for fault correction.

1. Introduction

 NASA is increasingly dependent upon systems in
which software is a major component. These systems are
critical to the success of NASA’s mission and must
execute successfully for a specified time under specified
conditions, that is, they must be reliable. The capability
to accurately measure the reliability of the software in
these systems is an essential part of ensuring that NASA
systems will meet mission requirements. The Software
Assurance Technology Center (SATC) at the NASA
Goddard Space Flight Center (GSFC) conducted a study
that addressed the relationships between hardware and
software reliability to identify potential improvements to
the software reliability models and to determine how
readily the approach could be applied to typical GSFC
projects. A paper, “Application and Improvement of
Software Reliability Models,” describing the complete
study is located on the SATC WEB site at
http://satc.gsfc.nasa.gov/support/index.html.

 Software reliability engineering mathematically
models the behavior of a software system based on its
failures. Predictions such as time-to-next failure, mean
time to failure, total number of faults remaining in the
system, number of faults remaining at time t are
examples of measurements derived from the reliability
models and project failure data. These measurements
provide an indicator of reliability growth, for example,
as the mean time to failure gets larger, then the software
is considered to have shown reliability growth.
 The equations for the models have parameters
estimated from techniques like least squares or
maximum likelihood estimation. Then the equation of
the models, often containing exponents or logarithms,
must be executed. Tedious computationally,
mathematical and statistical functions provide the
predictions and degrees of confidence for the
predictions. Verifying that the selected model is valid
for the particular data set may require iteration and study
of the model assumptions. While the entire process may
be tedious and error-prone when performed manually,
software tools reduce the difficulties. It provides
managers with a valuable measurement to be used with
other reliability metrics in making important decisions
such as test or maintenance schedules and product
release.
 We used a software tool to model GSFC data to
determine if this measurement technique is practical. We
identify the type of effort needed by the project staff to
use this measurement technique successfully. Specific
issues that may affect usage of these models include the
modeling process, data collection requirements,
availability of software tools to support these models,
and difficulties of using the models and interpreting their
results. We show that a modification to the
Schneidewind model to account for the fault correction
process may be a useful improvement for software
reliability modeling.

2. The modeling process

 The current software reliability modeling process is
based on features of hardware. While some models
compensate for some differences between hardware and
software, overall they do not. Schneidewind’s model
does by discounting the earlier part of the software
failure history because of an assumption that after
correction, the earlier number of failures does not affect
the current failure rate. Some models identifying the
mean time to next failure assume that the system has
been tested after debugging with no failures observed,
but for software latent faults often exist and cause failure
in operation. While the models assume that the system is
exercised in circumstances very similar to the final
operating environment, it is often extremely difficult to
test software in its operating environment [1].
 The AIAA’s Recommended Practice for Software
Reliability defines a formal procedure of eleven steps for
software reliability estimation [2]. The first three
pertain to establishing requirements for the system and
are outside this discussion. Another step, defining
failure, is accomplished by NASA guidelines on defining
non-conformances [3]. The remaining 7 steps are
specific to software reliability modeling and are
discussed in the remaining paragraphs of this section.
Some steps may require interaction between project
members and the reliability analyst. They include
characterizing the operational environment, selecting
tests, selecting the models, collecting the data, estimating
parameters, validating the models and performing
analysis. We examined these steps to determine if
software reliability modeling techniques could be
practically used at GSFC.

2.1 Characterizing the operational environment

 Reliability measurement assigns some reliability
measure to a system, such as predicting the number of
faults remaining, the number of failures expected in a
given time, how much time is needed to find a specified
number of faults, or the probability of operating without
failure in a specified time. Reliability measures may be
determined for system components or for the entire
system. Hence, the analyst needs to know the system
configuration either to allocate system reliability to
component reliabilities or to combine component
reliabilities to establish system reliability. The system
may evolve with new code or components and these may
affect usage of the reliability estimations. Finally, the
system operational profile may show how different
modes are utilized and may need to have separate
reliability measurements for them.

2.2 Test approach

 The analyst needs to understand the testing approach
such as the integration of components or the approach to
correction of faults. Without this knowledge, failure data
may be incorrectly associated with wrong components or
the assigned time intervals may not represent reality.

2.3 Model selection

 Model selection is complex. Criteria for model
selection include predictive validity, ease of parameter
measurement (e.g., the amount of data should be ~5
times as much as the number of parameters), quality of
assumptions, capability, applicability, simplicity,
insensitivity to noise (calendar instead of execution time)
[2].
 Predictive validity addresses the forecast quality of
each model and is usually determined by a goodness-of-
fit test. Most models have parameters that need to be
determined before the equations of the model can be
solved. Fortunately the tool used in this study performs
these determinations.
 On the other hand, matching a project to the
assumptions of a model may not be easy. The
assumptions need to match the actual project testing and
operational environment as closely as possible. These
include features such as ability of test inputs to encounter
faults, independence of effects of all failures, test
coverage, observation of all failures when they occur, or
assurance that faults removed on discovery are not
counted again. The development and test staffs need to
interact with the analyst to determine which assumptions
hold for a specific project. This function requires
intellectual effort and project knowledge by the analyst
prior to the steps performed by software reliability
modeling tools.
 Capability refers to the ability of a model to estimate
other reliability measurements such as the mean-time-to-
failure (MTTF) or the confidence intervals for estimated
parameters. The tool used in this study provides these
measurements according to each model’s equations.
 Each model may accommodate different development
and operational environments and therefore should
consider features such as evolving software, failure
severity classification, incomplete failure data, multiple
installations of the same software, and project
environments departing from the model assumptions.
 Simplicity refers to three time-consuming and
expensive parts of reliability measurement: the data
collection process, the modeling concepts, and
implementation. Data collection and implementation are
addressed in sections 2.4, 3, and 4 of this paper. The
simpler the modeling concepts, the more easily an

analyst may understand the assumptions, estimate the
parameters, and interpret the results, overall assuring
more accurate results from use of these techniques.
 A model’s results should not be biased by noise, such
as extraneous data or incorrect data. For software
reliability, the usual noise is the time component. The
hardware reliability models are based on a continuous
variable of time. For hardware, failure data may be
collected in calendar time that may be a continuous
variable, especially for wear-out. Calendar time and
execution time may be the same. For software, failure
data usually are provided in calendar time, which is not
usually the same as execution time, especially during
testing, and therefore is not necessarily a continuous
variable. Adjustments need to be made to get as close as
possible to execution time. Calendar time can be
especially difficult to adjust if the data collection system
records only the date of the failure but not the number of
hours (or days) spent testing. The analyst can assign a
test interval of a day but must know whether testing
occurs on weekends and holidays.

2.4 Data collection

 Data collection of any type, in any environment, in
any domain, is generally resisted and difficult to achieve
due to time and perception that data collection interferes
with the “real” work. To overcome resistance, the
analyst must clearly state the objectives for the data and
request only the data essential to successful use of the
models. Data are crucial to the success of software
reliability modeling. Section 3 describes features of data
collected in a project at GSFC and the transformation of
that data for use with software reliability models.
 The analyst must remember that if data requests are
too intrusive on the project, costs and schedules suffer
and project cooperation may go rapidly to zero. The
project and the analyst will benefit from discussions
about the project’s development and test processes and
about the system description. The analyst must keep the
data collectors motivated, get access to the data quickly
and review it promptly.

2.5 Parameter estimation

 Three common methods for parameter estimation
include the method of moments, least squares, and
maximum likelihood estimation. The tool used in this
study performs maximum likelihood estimation, the most
commonly used approach.

2.6 Model validation

 All of the software models supported by the tool used
in this study have been used in industry, often the

industry for which the model’s designer first exercised
the model. As discussed in Section 2.3, model selection
is based on the assumptions of the model. The analyst
needs to examine the model’s assumptions very carefully
to assure that the model is valid in the specific domain
and even for a new project within a domain. Also,
different models may not necessarily produce similar
results for the same data. A caution is provided by
Littlewood, “Different software reliability models can
produce very different answers when called upon to
predict future reliability in a reliability growth context.
Users need to know which, if any, of the competing
predictions are trustworthy. Some techniques are
presented which form the basis of a partial solution to
this problem. In addition, it is shown that this approach
can point the way towards more accurate prediction via
models which learn from past behaviour” [4].
 Farr cautions us to be careful about a model’s
assumptions, for some are unforgiving [5]. For example,
Schneidewind’s model assumes the time intervals over
which the failures are observed are equal. In practice,
this means establishing equal intervals and including
those in which no failures occurred. Other assumptions
may be violated, such as the distributional one about the
number of failures per unit time, and still credibly fit the
data. The Brocklehurst-Littlewood chapter in [6]
provides a partial solution to this problem of model
validation. It is difficult to characterize programs that fit
specific models because programs differ so widely in the
problem being solved, development practices,
architecture, degree of fault tolerance and other features.
The models themselves make fairly crude assumptions
about what may be a complex failure process. A way
around this situation may be to evaluate each model’s
predictive accuracy upon each data set that is analyzed,
that is, compare a prediction with an actual observation
of a program.
 Potential solutions to model validity may seem
complex, but discussion in Section 4 about an
application with a software tool indicates that model
validity is manageable. The tool exercises several
models, either time-between-failure models or failure
count models. The tool provides statistical analyses
concerning the accuracy and validity of each model
relative to the input data.

2.7 Analysis

 Once all the previous steps have been performed, the
analyst executes the tool for the selected model(s). The
difficult part is that the analyst must study the results (1)
to determine if the timeline should be changed and (2) to
decide what values to enter to enable predictions. The
analyst may have selected several models and may need
to determine which is the better fit for the project.

3. Collection of data

 At GSFC, some projects use the Distributed Defect
Tracking System (DDTS) to collect testing and
operational nonconformance data, primarily for
managing and tracking non-conformances. In the
context of this study, failures are nonconformances that
caused the system or component not to perform a
required function within specified limits, or the
termination of the ability of a functional unit to perform
its required function, or caused program operation to
depart from program requirements.
 For reliability prediction and estimation, it is
important for the analyst to ensure data content and
validity by reviewing the data when collected to ensure
that all necessary data for each fault have been
submitted. The analyst needs to keep information about
the system and all the activities in developing, testing,
and debugging and correcting it to ensure that the data
match data each model’s assumptions and are organized
the data correctly for use with the models.
 Several projects have their own implementation of
the DDTS, each possibly with slight variations in the
data collected. Each is a distributed system with access
rights given to many people with different project
responsibilities. Data are entered and housed in the
resident database for each project’s system. In some
cases, data from that database may be offloaded
elsewhere for other purposes. It is likely that an analyst
who may not be directly aligned with the project will
work with the offloaded data. The analyst needs to
ensure that all necessary supporting information is
collected and included in the transferred data.
 Beyond content, the analyst must be concerned with
organizing the DDTS data to provide the form of data
required by the software reliability models, either time-
between-failure or failure counts by time interval data.
This data reduction activity may involve considerable
manipulation and transformation activities.

3.1 Data content

 The software reliability modeling data requirements,
number of faults in a time interval or the time between
failures, appear to be simple. But, when projects collect
data, the intent is often to provide information
prioritizing corrections and for tracking the fault
correction process. The DDTS contains a large amount
of data that must be reduced to the simplicity of the
required input.
 Most likely, for a specific project, data from all
testing activities for all components are entered into the
system. Specific information that the analyst must be
able to extract consists of the activity that found the
failure, the date of the failure, and the severity of the

failure. In Section 6, we show that the date the correction
began and date the correction was completed are
important for improvements to software reliability
modeling for the fault correction process. The analyst
must be able to define equal time intervals, e.g., 1 day.
When the timeline is long and occurs over holidays or
weekends, then it is important to know if testing
occurred during those times. When there are intervals
with no failures, the analyst needs to know if either
testing or fault correction occurred. The size or number
of test intervals must be adjusted to accommodate
intervals with more than the usual staff size. These
issues are important in order to get a discrete variable as
close to continuous as possible.
 Because the defect tracking systems appear to be
used across the entire project, the analyst should
understand the testing approach concerning integration
of components and how they are identified within the
tracking system. Data must be sorted by components as
they are tested. The analyst needs to discuss with the
project staff exactly what data are stored in the DDTS to
have valid data for the modeling. If the project does not
collect appropriate data, then either modeling cannot be
used for that project or the requirements for data
collection need to be changed. It would be best for the
analyst to look at a project’s DDTS frequently to validate
that the data have been entered correctly and in a timely
manner.
 Some initial considerations for modeling purposes
include:
 the data should be collected from integration test

through operation
 extensive changes should not be routinely made,

that is, software cannot be changing so fast that
data gathered one day is radically different from
another day

 the data should provide an indicator of the type of
testing, e.g., component testing, integration testing,
or system testing, including names of components.

 To emphasize again, the analyst must have
information about the validity of the data, including but
not limited to its history, other events occurring when the
data were collected, how accurate the date submitted is
relative to the date actually found and especially the
dates of testing.
 Some of the models may be used at unit or integration
test, but most are used during system testing and
operation. Failure data in the form of time between
failure or the failure count within equal time intervals are
input to software reliability modeling. Each model uses
data that meet assumptions about failure rate and
intensity and fit a curve implied by the model’s
mathematics.

3.2 Data manipulation

 When data are provided to an analyst in a database or
spreadsheet, sorting data into appropriate categories is
simpler than when the data is presented in text files. In
this case, a text file for each of thousands of data records
requires considerable effort to sort out extraneous
information and consolidate the necessary data into a
manageable spreadsheet or database.
 When the analyst has direct access to a project’s
DDTS or a database derived from it, many of the
difficulties may be eliminated because of the ease of
sorting and transforming usually provided by database
capabilities. The data may be further reduced by some of
the project parameters. For example, faults at severity 1-
3 may be corrected at a higher priority than those at
severity 4 and 5, and so data for the severity 4 and 5
faults can be eliminated. Data may be needed only for
certain components and must be sorted out.
 The data for an analysis must come from the same
testing activity and are extracted from the date of
discovery and the number of faults found on the same
date. Sorting the data may require considerable
manipulation of the DDTS data. The specific tool used in
this study requires a text file of either the number of
faults found in every time interval or the number of time
intervals between faults. Manipulating the data into the
appropriate text format may require varying amounts of
manual effort depending on how readily the database or
spreadsheet produce output accepted by the software
reliability modeling tools.

4. Software tool availability

 Software support is a valuable resource because the
reliability models require several complicated steps
engaging mathematical functions using logarithms and
exponents and statistical techniques such as maximum
likelihood estimation and Chi square goodness of fit. As
an example, in Schneidewind’s model, the time to next
failure(s) at time t is computed by Equation 1.

T F(t) = [(log(α/(α-β(Xs,t+Ft))))/β]-(t-s+1) (1)

Ft is the number of faults for which the prediction Time
to next failure(s) TF(t) is made at time t; α, β are the
parametric values computed for the model; s is the
starting interval for using observed failure data in
parameter estimation for the Schneidewind model. A
software tool making invisible these computations and
the need to understand them expertly would be valuable
to the user.

 Recent WEB searches identify basically the same
software reliability modeling tools from a survey
conducted in the early 1990s [7] and those listed in the
AIAA recommended practices [2]. A compact disc (CD)
containing several tools is provided with the Software
Reliability Handbook [6]. One of these is SMERFS, a
public domain tool developed by Dr. William Farr of the
Naval Surface Warfare Laboratory and employs several
of the models. We selected it for use with our
experiments.

Table 1. SMERFS^3 software reliability models

Interval Data Models
 Brooks and Motley’s Binomial Model
 Brooks and Motley’s Poisson Model
 Generalized Poisson Model (2 versions)
 Non-homogeneous Poisson Model
 Schneidewind’s Model (3 treatments)
 Yamada’s S-Shaped Model
Time Between Failure Models
 Geometric Model
 Jelinski / Moranda Model
 Littlewood and Verrall Linear Model
 Littlewood and Verrall Quadratic Model
 Musa’s Basic Model
 Musa’s Logarithmic Model
 Non-homogeneous Poisson Model

 SMERFS has been modernized and is now called
SMERFS^3 to indicate the latest version. Table 1 shows
the models contained in SMERFS^3. While this version
has not been officially released, it is easier to use than
earlier versions because of the user interface. Because
we had access to the tool and its developer, it became the
baseline tool supporting this study.
 After examining a project’s characteristics, an analyst
may reasonably permit SMERFS^3 to select the
appropriate models. SMERFS^3 provides other services
that free the analyst to worry only about the goodness of
the failure data and the interpretation of the results. The
tool computes the parameters needed for the various
models and checks results for validity and accuracy of
each model. It provides confidence intervals for the
parameters for the models utilizing them.
 The tool allows the user to select a specific model or
to have SMERFS^3 select those that are appropriate. All
interval data models use the same input and all time-
between-failures use the same. The program provides
some transformation assistance between the two types of
data. It is speedy: exercising several reliability models on
a data file of over 300 time intervals took only seconds.
 SMERFS^3 is only a tool. It does not interpret results,
that is, it will not replace the intellectual ability of the
analyst. The analyst must rely on knowledge about the

project and judgment to understand what the results
mean relative to the system’s reliability. Even though
the tool computes all the mathematics, a fair amount of
understanding of the underlying mathematics and
statistics is needed to interpret the results. The tool does
perform curve fitting on the input data and will refuse to
exercise the data on inappropriate models. Of the
models it does exercise, results may vary widely. The
parametric values of the models are provided, but the
analyst needs to understand them to decide which output
results are meaningful. After an analyst acquires
experience, interpretation and judgment may become
easier and quicker. Execution time is in seconds but the
time to prepare the data may be substantial. The time to
interpret results, alter the length of the data set, and
repeat the process may be overwhelming. The example
in Section 5 provides evidence that most of the
difficulties can be overcome with a little experience.

5. Example of software reliability modeling

 We describe this experience with software reliability
modeling to characterize the advantages and the
constraints of using this measurement technique. While
the tool reduces manual computations, questions remain
about other tasks. How much knowledge of the
mathematics would a user need to interpret the results?
We describe the steps necessary before applying
SMERFS^S and the process of using the tool. We show
sample output. Finally we discuss some lessons learned.

5.1 Initial process steps

 Of several projects available to us, we discuss only
one project. We had a description of the variables in the
DDTS and some information about testing schedules.
We could not develop a true characterization of the
operational environment or the various test activities and
their relationships to the pieces of the software system.
Given those constraints, we prepared the data for the
modeling process.
 Of the many data fields of the DDTS, only a few were
significant. These were the dates the failures occurred,
the activity or phase in which they were found, and their
severity level. The severity level mattered because
corrections of non-conformances at lower severity levels
were deferred and may have reappeared in later testing.
The activity or phase was the only information for
sorting the failure data by software component or
subsystem. Because their names were not always
consistent, we asked a project person to sort failures into
their proper activities. The date provided the link to

time-between-failure and to the failure count for a time
interval. For time intervals of a day, we located
calendars to eliminate weekends and holidays.
 While it was much simpler to use intervals of a week
or a month, we needed to map those time periods
properly and to ensure we had enough data for these
larger intervals. Regardless of whether the data was in a
database or spreadsheet, manipulation and reduction to
forms needed by the models took a significant amount of
time. The process is error-prone and requires
verification. Macros may help to reduce the effort.

5.2 Exercising the models

 SMERFS^3’s pull-down menus are concise and leave
little room for misunderstanding. The user is asked to
specify whether the input is time-between-failure or
interval data. For interval models, failure counts for
every interval, even those without failures, must be
provided in a text file with care not to have a blank line
at the end of the file. The user may select the models to
be executed but usually it is better to let SMERFS^3 do
the selections with accuracy analyses for the models. If
the data are grossly inappropriate for a model, the tool
will inform the user. Table 2 shows a sample of input
data, for nine intervals of one week. Week 7 had no
failures and must be shown. The count of failures is in
column 1 and column 2 indicates the data are for
software failures.

Table 2. Sample interval data for SMERFS^3
1 1.
6 1.
7 1.
3 1.
7 1.
5 1.
0 1.
3 1.
1 1.

5.3 Sample Executions

 From several project activities, we chose integration
testing for subsystem 1 spanning 26 months, or, 110
weeks, with 130 failures. We chose intervals of one
week. We exercised the data at 69 weeks, and 110 weeks
to see if predictions made at 69 weeks would indicate the
full 130 faults found at 110 weeks. There were 129 faults
at 69 weeks. The circles in Figure 1 indicate the
observed faults, and the models, beginning at the bottom
to the top are Brooks and Motley’s binomial, Brooks and
Motley’s Poisson, Schick–Wolverton Poisson,
generalized Poisson weighting 2, non-homogenous
Poisson and Schneidewind (treatment 1). The number of

observed failures varied widely in the first weeks, as is
anticipated. The number of failures leveled off and
reliability growth occurred, that is, reliability was higher.

Figure 1. Sample graphs of models

 SMERFS^3 generates a chart for each model with
the estimates of total faults and total faults remaining
produced by the models. The prediction section requires
interaction with the analyst. The queries vary slightly
depending on the model and produce answers such as
how many failures to expect within a specific test time or
how long it would take to encounter n faults. Figure 2 is
the output for Yamada’s S-shaped model. Of course if
the estimated number of faults is less than 1, then a
prediction cannot be made.

Figure 2. Sample output with predictions

 Table 3 shows some possible predictions with a
summary of other output for the interval data of 69
weeks, for the models that produce confidence intervals.
The models of Table 3, Generalized Poisson –2, non-
homogeneous Poisson, and Yamada, produce Chi-square

values to indicate how good the curve fit is to the input
data. Using Chi-square fits and confidence intervals
helps as does comparing results of same data using one
shorter and one longer set of observed values for
predictions. The model that produced the prediction
closest to the 110 weeks of data is Yamada. The analyst
uses all of this information to determine which model to
use. Analyzing all this information helps an analyst to
avoid selection of a poor model. Ideally the analyst
exercises the models for time beyond the time of the
observed data to enable predictions far out.

Table 3. Predictions with confidence intervals

 LC
I

P UCI LCI TNF UCI

GP2 .027 .035 .043 137.8 139.
3

140.
8

NHP
P

.022 .032 .042 129 144 171

YAM .072 .084 .096 129 131.
7

154.
3

 LC
I

TNF
R

UCI CHI
2

Pred

GP2 8.88 10.34 11.8
5

127 .362

NHP
P

0 15 42.3 58.6 4.21

YAM 0 2.68 25.3
7

117.8 1.38

P: probability of detecting faults
Pred: # faults predicted in next 10 test periods
TNF: total # faults
TNFR: total # faults remaining
Chi2: Chi-square value

 5.4 Lessons Learned

 When we initiated the software reliability modeling
process on the first set of data, we had no experience
with either SMERFS^3 or data from any of the defect
tracking systems. To ease difficulty in learning how to
use SMERFS^3, we recommend that the tool contain a
brief tutorial with one set of input data of interval type
and one of time between failure type, along with output
and interpretation for each. Within a couple hours
anyone could understand how this tool can be used for
software reliability modeling. We believe that once an
analyst has applied the SMERFS^3 tool, he will have
little or no future difficulty utilizing it.
 While each run with SMERFS^3 is almost
instantaneous, an analyst needs to have reports with the
charts and plots to show project staff. While a printout of
the models’ numeric values for the charts is available,

the predictions are not printed. Saving the output data to
a file accessible by other people took some manipulation.
As SMERFS^3 matures, some of the problems with
saving output may disappear. Until then, the lesson is for
a user to save each screen output to a WORD file. A
macro may ease the difficulty of manipulating screen
outputs in a file.
 Data issues are somewhat more involved and concern
either data collection or data manipulation. Most GSFC
projects span several years. The defect tracking systems
provide data for monitoring the status of non-
conformances. Records for test schedules and staffing
levels do not appear in the database but without this
information the time between failures may be incorrect.
It may also be misleading when there are no failures for
consecutive intervals because it is not clear if testing has
occurred during those intervals. If not, then the intervals
need to be adjusted. Similarly two people conducting
tests instead of one person changes the interval size. The
lesson is that test schedule information and staffing
levels should be required information in the tracking
system and should be made available to the analyst.
 Data input must be constructed so that the failures are
from the same software component; therefore failures
should relate to the software component. The “activity”
field almost accomplishes this, but could be enhanced
with another field naming the involved component(s).
The lesson here is to require the software component
name field in the tracking system. Also, if some fault
corrections are deferred indefinitely, then they should be
labeled accordingly. Addressing these lessons should
satisfy the data collection concerns.
 The analyst needs to manipulate the data considerably
to organize it by software type and test activity, then by
data and finally by count. These are manual and highly
error-prone tasks. Macros to ease the difficulty of
manipulating the project data in a spreadsheet may
mitigate these concerns.
 The remaining step, interpretation of results, is
probably the most difficult aspect of software reliability
modeling. It also depends on how well the data were
interpreted in the first place. Therefore, the first lesson is
that the analyst must work carefully with project staff to
understand the organization, test schedule, and
operational environment of the software. SMERFS^3
produces statistical information to aid the analyst in
selecting the best model for the data and in evaluating
the estimates. Another lesson is that training in
understanding the results and applying to decisions
concerning the project would remove the final hurdle to
making this technology a practical instrument at GSFC
for software reliability measurement.

6. Modeling the fault correction process

 In general, software reliability models have been
based on hardware reliability models and hence have
focused on failure data and predicting failure occurrence.
They have not given equal priority to modeling the fault
correction process. However, there is a need for fault
correction prediction, stemming from the fact that the
fault correction process is vital to ensuring high quality
software. If we only address failure prediction, reliability
assessment will be incomplete because it would not
reflect the reliability of the software resulting from fault
correction. In addition to achieving greater accuracy in
reliability prediction, there are by-product benefits
associated with fault correction prediction as follows:
 Predicting whether reliability goals have been

achieved: If no predictions are made of the number
of faults to be corrected, fault correction rate, and
fault correction time, accurate prediction of
reliability cannot be obtained.

 Providing stopping rules for testing as follows: (1)
The predicted number of remaining faults is less
than or equal to a specified critical value and (2)
The fault correction rate asymptotically approaches
zero.

 Prioritizing tests and allocating test resources:
Software with high values of number of remaining
faults and low fault correction rates are given high
priority in testing and allocation of resources, such
as personnel and computer time.

 Dr. Norman Schneidewind developed a fault
correction modification for SATC and applied it initially
to his model [8]. The modification assumes that the
number of corrected faults has the same general form as
the number of detected faults but with a variable delay
dT, that is, Equations 2 and 3 are similar for D(T) and
C(T), the predicted number of faults detected at time T,
and the number of faults corrected at time T,
respectively:

D (T) = (α/β)[1 – exp (-β ((T-s+1)))] + Xs-1 (2)

C (T) = (α/β) [1- exp (-β ((T-s+1) - dT))] + Cs-1 (3)

 The parameters α and β are computed from the
maximum likelihood function in SMERFS^3, and s, also
computed from SMERFS^3, is the starting interval for
using observed failure data in parameter estimation. Xs-1
and Cs-1 are the observed fault count and fault correction
count in the range [1, s-1], respectively. Using these
equations and the cumulative probability distribution, the
new model yields new measures for the number of
remaining faults, the time required to correct C faults,
the proportion of faults corrected, the fault correction

rate, and other prediction capabilities such as whether
reliability goals have been achieved. Data from the space
shuttle and the project already described in this paper,
but for 35 weeks, were used to validate the model. The
derivation, equations and validation are provided in [8].
 From a practical standpoint, the question is “How can
one utilize these new equations?” Dr. Schneidewind has
provided SATC with a spreadsheet to compute these new
measures. The values of α, β and s are computed from
SMERFS^3 and are entered into the spreadsheet, along
with the interval failure data. The analyst must exercise
care in entering the data but can also make and control
predictions directly within a worksheet. These can
readily be delivered to the project member requesting the
predictions. By using a spreadsheet, instead of a
software tool in executable form, the analyst can enter
new equations or models. Not least, with control of the
output, the analyst can choose how to present the results
in graphs readily produced by the spreadsheet.

7. Conclusions

 Software reliability modeling is one of many methods
to aid in measuring software reliability. Others may
include inspections, testing, change control boards,
metrics gathered from these and other methods. In a
paper addressing software reliability modeling for
Shuttle software, Schneidewind suggests that perhaps
experience and judgment are most important for
understanding software reliability measurements [9].
 With careful application of this technique, project
managers have a valuable tool to assist them in making
major decisions. These include but are not limited to
establishing or altering test schedules for integration and
system testing, for staff allocation, for product release,
including release of some components for the next stage
of integration, and for maintenance scheduling of
released products.
 This study has shown that software tools can perform
most of the mathematical and statistical functions of
software reliability modeling. Analysts can perform the
technique within reasonable amount of time and without
a deep understanding of the mathematics. The two major
issues are data reduction and interpretation of results.
The first of these can be simplified by macros for either a
data base or spreadsheet used in preparing the data for
SMERFS^3. The latter can be enabled with experience
applying the technique.
 The SATC can enable a project to gain access to this
critical measurement technology in a number of ways: 1)
by training its engineers, 2) through teaming and
partnering on a phase-driven basis, or 3) by serving as
independent analysts, i.e., assessing the data and

formally reporting results and conclusions. The choice
of option remains a project manager's prerogative; the
critical issue is to achieve understanding and reduce the
project's risk.
 Finally, the new Schneidewind model adjusts for fault
correction, which the earlier models do not. Applying
this technique requires the use of both a software
reliability modeling tool to get parametric values and a
spreadsheet for the actual correction model. This appears
to be a promising approach to software reliability
measurement. More experience applying this model to
actual project data is needed to judge its value.
 Overall, this study has shown that software reliability
modeling has a valuable role in software measurement
and that the technique can be applied in a practical
manner.

8. References

[1] D. Hamlet, “Are we testing for true reliability?”

IEEE Software, Vol. 9, No. 4, July 1992, PP. 21-27.
[2] American Institute of Aeronautics and Astronautics,

Recommended Practice for Software Reliability,
ANSI/AIAA R-013-1992, February 1993.

[3] Corrective and Preventive Action, Goddard
Procedures and Guidelines, GPG 1710.1E,
November, 1999.

[4] B. Littewood, A.A. Abdel Ghaly, and P.Y Chan,,
“Tools for the Analysis of the Accuracy of Software
Reliability Predictions,” Software System Design
Methods, Edited by J. K. Skwirzynski, NATO ASI
Series, Vol. F22, Springer-Verlag, 1986, PP.299-333.

[5] W. B. Farr, “Software Reliability Modeling Survey”,
Handbook of Software Reliability Engineering,
Michael R. Lyu (Ed), IEEE Computer Society Press,
McGraw Hill, 1996.

[6] M.R. Lyu,, Editor, Handbook of Software Reliability
Engineering, IEEE Computer Society Press,
McGraw Hill, 1996.

[7] G. E. Stark, “A Survey of Software Reliability
Measurement Tools,” Proceedings of the 1991
International Symposium on Software Reliability
Engineering, IEEE Computer Society, pp. 90-97,
1991.

[8] N. F. Schneidewind, "Modeling the Fault Correction
Process," Proceedings of the International
Symposium on Software Reliability Engineering,
IEEE Computer Society, November, 2001.

[9] N. F. Schneidewind, “Reliability Modeling for Safety
Critical Software,” IEEE Transactions on Reliability,
Vol. 46, No. 1, March 1997, PP. 88-98.

